1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
5

An element's atomic number is 13. How many protons would an atom of this element have?

Physics
1 answer:
horrorfan [7]3 years ago
3 0
The element would have 13 protons 
You might be interested in
What happens to the ball's velocity while the ball is traveling upwards?
Bess [88]
If the ball does not have a propeller or jet engine on it, then it is an object
in free fall.  That means its downward speed grows by 9.8 m/s for every
second that it's in the air. 

If it happens to be traveling upward at the moment, then that won't last long. 
Its upward speed is decreasing by 9.8 m/s every second.  It will eventually
run out of upward gas and start moving downward.  At that instant, you might
say that the direction of its velocity has changed by 180 degrees.
7 0
3 years ago
How does Physics help you as a student?
Sonja [21]

Answer:

The goal of physics is to understand how things work from first principles. ... Courses in physics reveal the mathematical beauty of the universe at scales ranging from subatomic to cosmological. Studying physics strengthens quantitative reasoning and problem solving skills that are valuable in areas beyond physics

8 0
3 years ago
Read 2 more answers
On Earth, a brick has a mass of 10 kg and a weight of 5 lbs. What predictions could we make about the mass and weight of the bri
belka [17]

Answer:

Mass remains constant but weight reduces

Explanation:

Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.

Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.

Therefore, for this case, since g decreases, the weight decreases but mass remains constant.

8 0
3 years ago
Help me answer this question and get yourself some points!
Marrrta [24]

Answer:

A×B=C×D

500×0.5=250×X

250=250×X

X=250/250=1

X=1 m

Explanation:

note: if the force plus two, the distance will be half.

4 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
Other questions:
  • What is inertia? Specifically, what is inertia in relation the the gravity properties of astronautical planets.
    5·1 answer
  • What is the structure located inside the nucleus of a cell that contains an organism’s genetic code?
    7·1 answer
  • Could someone help me with this please?
    12·2 answers
  • A battery does 2.186 J of work to transfer 0.033 C of charge from the negative to the positive terminal. What is the emf of this
    6·1 answer
  • a car travels 50 kilometers West and 10 minutes. after reaching the destination the car troubles back to the starting point, aga
    5·1 answer
  • Is there ever a situation where an ant will have more momentum than an elephant? Explain why or why not?
    8·2 answers
  • Witch of the following is an example of a pull
    15·1 answer
  • Listening to your favorite radio station involves which area of physics?
    15·1 answer
  • a horizontal force of 300 N is needed to push a crate along the floor at constant speed. What is the friction force on the crate
    14·1 answer
  • 5. How far can a car travel in 14 hours while going at a speed of 75 miles per hour?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!