The balanced equation for the decomposition of solid lead iv oxide is as follows: 2PbO2 = 2PbO + O2.
Lead IV oxide decompose to give lead ll oxide and oxygen. Lead iv oxide is thermally unstable and it usually decomposes into oxygen and lead ll oxide when heated. Lead ll oxide is more stable than lead lV oxide.
Answer:
8. the answer is B.
9. the answer is A.
Explanation:
Hello!
8. In this case, by bearing to mind that the limiting reactant is always completely consumed and the excess one remain as a leftover at the end of the reaction, we can also infer that as all the limiting reactant is consumed, it must determine the maximum amount of product as the excess reactant will hypothetically produce a greater mass than expected; thus, the answer to this question is B.
9. In this case, since the mole ratio of oxygen to water is 1:2, the following proportional factor is used to calculate the produced mass of water:

Thus, the answer is this case is A.
Best regards!
<u>U</u> <u>VORBELLO</u> <u>FRANÇAIS</u><u>?</u><u>?</u><u>?</u>
Answer : Option D) The particles move enough that they are not fixed in place, and the liquid can flow.
Explanation : The kinetic energy of the particles are allowed to move freely and are in motion when in the liquid state whereas the intermolecular particles can just flow; as the intermolecular attractions between the particles allows the liquid to flow by giving them a force to flow.
Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years