Answer:0.300M
Explanation:1) Data:
a) Initial solution
M = 1.50M
V = 50.0 ml = 0.050 l
b) Solvent added = 200 ml = 0.200 l
2) Formula:
Molarity: M = moles of solute / volume of solution is liters
3) Solution:
a) initial solution:
Clearing moles from the molarity formula: moles = M × V
moles of H₂SO₄ = M × V = 1.5M × 0.050 l = 0.075 mol
b) final solution:
i) Volumen of solution = 0.050 l + 0.200l = 0.250l
ii) M = 0.075 mol / 0.250 l = 0.300M ← answeer
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient: ![Q_{r} =\frac{\left [ PEP \right ]}{\left [ 2PG \right ]} = \frac{0.1 mM}{0.5 mM} = 0.2](https://tex.z-dn.net/?f=Q_%7Br%7D%20%3D%5Cfrac%7B%5Cleft%20%5B%20PEP%20%5Cright%20%5D%7D%7B%5Cleft%20%5B%202PG%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B0.1%20mM%7D%7B0.5%20mM%7D%20%3D%200.2)
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>

![\Delta G = 1.7 kJ/mol + [2.303 \times (8.314 \times 10^{-3} kJ/(K.mol))\times (310.15 K)] log (0.2)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20kJ%2Fmol%20%2B%20%5B2.303%20%5Ctimes%20%288.314%20%5Ctimes%2010%5E%7B-3%7D%20kJ%2F%28K.mol%29%29%5Ctimes%20%28310.15%20K%29%5D%20log%20%280.2%29)
![\Delta G = 1.7 + [5.938] \times (-0.699) = 1.7 - 4.15 = (-2.45 kJ/mol)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20%2B%20%5B5.938%5D%20%5Ctimes%20%28-0.699%29%20%3D%201.7%20-%204.15%20%3D%20%28-2.45%20kJ%2Fmol%29)
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>
Answer:
1.36 × 10³ mL of water.
Explanation:
We can utilize the dilution equation. Recall that:

Where <em>M</em> represents molarity and <em>V</em> represents volume.
Let the initial concentration and unknown volume be <em>M</em>₁ and <em>V</em>₁, respectively. Let the final concentration and required volume be <em>M</em>₂ and <em>V</em>₂, respectively. Solve for <em>V</em>₁:

Therefore, we can begin with 0.640 L of the 2.50 M solution and add enough distilled water to dilute the solution to 2.00 L. The required amount of water is thus:

Convert this value to mL:

Therefore, about 1.36 × 10³ mL of water need to be added to the 2.50 M solution.
The answer is "Incidents"
1 molecule of C3H7O has 7 atoms of hydrogen (remember that the numbers to the right of each symbol ara subscripts and they indicate the number of atoms of that element in the molecular formula).
Then 5 molecules will have 5 * 7 atoms of hydrogen.
5 * 7 = 35.
Then the answer is that there are 35 atoms of hydrogen in 5 molecules of isopropyl alcohol, C3H7O