The answer is: 1.5 moles of oxygen are present.
V(O₂) = 33.6 L; volume of oxygen.
p(O₂) = 1.0 atm; pressure of oxygen.
T = 0°C; temperature.
Vm = 22.4 L/mol; molar volume at STP (Standard Temperature and Pressure).
At STP one mole of gas occupies 22.4 liters of volume.
n(O₂) = V(O₂) ÷ Vm.
n(O₂) = 33.6 L ÷ 22.4 L/mol.
n(O₂) = 1.50 mol; amount of oxygen.
Answer:
Explanation:
1 = The given chemical reaction does not follow the law of conservation of mass because,
2 = Four hydrogen atoms are present in reactant side and two hydrogen atoms are present in product side.
3 = 1 ) The given chemical reaction does not follow the law of conservation of mass because,
CH₄ + O₂ → CO₂ + H₂O
16 g + 32 g 44 g + 18 g
48 g 62 g
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
Answer:
(b) Both have the same number of valence electrons.
Step-by-step explanation:
We find the most striking chemical similarities between two Main Group elements when they are in the same Group of the Periodic Table.
Elements in the same Group have the same number of valence electrons.
(a) is <em>wrong</em>, because elements in the same group have <em>different masses</em>.
(c) is <em>wrong,</em> because atoms with the same number of protons belong to the s<em>ame element</em>.
(d) is wrong, because elements in the same Group must be in .
<em>different Periods.</em>
Answer:
Rb: [Kr] 5s
Step-by-step explanation:
Rb is element 37, the first element in Period 5.
It has one valence electron, so its valence electron configuration is 5s.
The noble gas configuration uses the symbol of the previous noble gas as a shortcut for the electron configurations of the inner electrons.
The preceding noble gas is Kr, so the electron configuration is Rb: [Kr] 5s.