Answer:
M = 3.0 mol/L.
Explanation:
- We can calculate the molarity of a solution using the relation:
<em>M = (mass x 1000) / (molar mass x V)</em>
- M is the molarity "number of moles of solute per 1.0 L of the solution.
- mass is the mass of the solute (g) (m = 87.75 g of NaCl).
- molar mass of NaCl = 58.44 g/mol.
- V is the volume of the solution (ml) (V = 500.0 ml).
∴ M = (mass x 1000) / (molar mass x V) = (87.75 g x 1000) / (58.44 g/mol x 500.0 ml) = 3.0 mol/L.
Answer:
Explanation:
Hello!
In this case, given the chemical reaction:
In such a way, given the volumes and molarities of each reactant, we can compute the moles of produced iron (III) hydroxide by each of them, via the 3:1 and 1:1 mole ratios:
It means that the sodium hydroxide is the limiting reactant and 0.00833 moles of iron (III) hydroxide are produced; thus, the required mass is:
Chemical because the propane has stored chemical energy which is being released and a by-product of that propane is heat or themal energy.
The best answer for the question above would be the chloroflourocarbons or the CFCs. These chloroflourocarbons or CFCs are the ones responsible for the depletion of the ozone - which leads to leaving a hole in its layer. These gases eat out the ozone layer and allows harmful UV rays of the sun to come in the Earth.
High concentration of water and salt is the main ingredient of brine. Salt being NaCl and water make brain and important solution in making of chlorine.
Electric terminals are put inside the solutions and with the help of electric current the chemical properties of the solution are changed such that we get chlorine as outcome. This process is carried out in a large scale to get chlorine from NaCl in solution and is called electrolysis of Brine.