TLDR: The energy was being used simply to heat the substance up.
Whenever something melts, it performs what is called a "phase transition", where the state of matter moves from one thing to something else. You can see this in your iced drink at lunch; as the ice in the cup of liquid heats up, it reaches a point where it will eventually "change phase", or melt. The same can be achieved if you heat up that water enough, like if you're cooking; when you boil eggs, the water has so much thermal energy it can "change phase" and become a gas!
However, water doesn't randomly become a boiling gas, it has to heat up for a while before it reaches that temperature. For a real-life example, the next time you cook something, hold you hand above the water before it starts boiling. You'll see that that water has quite a high temperature despite not boiling.
There's a lot of more complex chemistry to describe this phenomena, such as the relationship between the temperature, pressure, and what is called the "vapor pressure" of a liquid when describing phase changes, but for now just focus on the heating effect. When ice melts, it doesn't seem like its heating up, but it is. The ice absorbs energy from its surroundings (the warmer water), thus heating up the ice and cooling down the water. Similarly, the bunsen burner serves to heat up things in the lab, so before the solid melts in this case it was simply heating up the solid to the point that it <u>could</u> melt.
Hope this helps!
Answer:
16
Explanation:
Protons have a positive net charge,
Neutrons being neutral don't have a net charge.
Each proton is one extra net charge if you have 16 of them and the neutrons don't affect your net charge you will have 16.
Explanation:
“The isomers butane and methyl propane have the same molecular formula and different properties”, this is because structural isomers usually have different properties to their parent.
Answer:
Option C = electron
Explanation:
Electrons are responsible for the production of colored light.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
How electrons produce the colored light:
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Other process may involve,
Fluorescence:
In fluorescence the energy is absorbed by the electron having shorter wavelength and high energy usually of U.V region. The process of absorbing the light occur in a very short period of time i.e. 10 ∧-15 sec. During the fluorescence the spin of electron not changed.
The electron is then de-excited by emitting the light in visible and IR region. This process of de-excitation occur in a time period of 10∧-9 sec.
Phosphorescence:
In phosphorescence the electron also goes to the excitation to the higher level by absorbing the U.V radiations. In case of Phosphorescence the transition back to the lower energy level occur very slowly and the spin pf electron also change.