Answer:
37.8 m
Explanation:
At point 0, the ball is at height y₀.
At point 1, the ball is at height 30 m.
At point 2, the ball is at height 0 m.
Given:
y₁ = 30 m
y₂ = 0 m
v₀ = 0 m/s
a = -10 m/s²
t₂ − t₁ = 1.5 s
Find: y₀
Use constant acceleration equation.
y = y₀ + v₀ t + ½ at²
Evaluate at point 1.
y₁ = y₀ + v₀ t₁ + ½ at₁²
30 m = y₀ + (0 m/s) t₁ + ½ (-10 m/s²) t₁²
30 = y₀ − 5t₁²
Evaluate at point 2.
y₂ = y₀ + v₀ t₂ + ½ at₂²
0 m = y₀ + (0 m/s) t₂ + ½ (-10 m/s²) t₂²
0 = y₀ − 5t₂²
y₀ = 5t₂²
Substitute:
y₀ = 5 (1.5 + t₁)²
y₀ = 5 (2.25 + 3t₁ + t₁²)
y₀ = 11.25 + 15t₁ + 5t₁²
30 = 11.25 + 15t₁ + 5t₁² − 5t₁²
30 = 11.25 + 15t₁
t₁ = 1.25
30 = y₀ − 5t₁²
30 = y₀ − 5(1.25)²
y₀ ≈ 37.8
The correct answer is - It is the part of the ocean where new crusts are formed.
The place marked with A on the map is the place in the ocean where the new crust is formed. That is a place where there's a divergent plate boundary, or rather a place where the tectonic plates are moving away from one another. The gap and cracks left between them are easy target for the magma from the mantle to penetrate towards the surface. As the magma reaches the ocean floor it starts to cool off very quickly, creating new crust, and slowly making a very large underwater mountain range known as mid-ocean ridge.
Answer:
20
Explanation:
20 multiplied by 2
hope i hv answered ur question
The answer is <span>thermoplastics
hope this helps
</span>
Answer:
0.5
Explanation:
Data provided in the question:
The angle between their transmission axes, θ = 60°
Now,
We have the relation,
I₁ = I₀cos²θ
where,
I₁ is the intensity of the transmitted light
I₀ is the intensity of the incident light
on rearranging, we get
=cos²60°
or
=0.5