Correct question :
If the perimeters of each shape are equal, which equation can be used to find the value of x? A triangle with base x + 2, height x, and side length x + 4. A rectangle with length of x + 3 and width of one-half x. (x + 4) + x + (x + 2) = one-half x + (x + 3) (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3) 2 (x) + 2 (x + 2) = 2 (one-half x) + 2 (x + 3) x + (x + 2) + (x + 4) = 2 (x + 3 and one-half)
Answer: (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3)
Step-by-step explanation:
Given the following :
A triangle with base x + 2, height x, and side length x + 4 - - - -
b = x + 2 ; a = x ; c = x + 4
Perimeter (P) of a triangle :
P = a + b + c
P =( x + 2) + x + (x + 4) - - - (1)
A rectangle with length of x + 3 and width of one-half x
l = x + 3 ; w = 1/2 x
Perimeter of a rectangle (P) = 2(l+w)
P = 2(x+3) + 2(1/2x)
If perimeter of each same are the same ; then;
(1) = (2)
(x + 2) + x + (x + 4) = 2(x+3) + 2(1/2x)
Jxjxndddjdjdsjskdjjdjdhxjsejdjdjdjddj
We have been given in a cohort of 35 graduating students, there are three different prizes to be awarded. We are asked that in how many different ways could the prizes be awarded, if no student can receive more than one prize.
To solve this problem we will use permutations.

We know that formula for permutations is given as

On substituting the given values in the formula we get,


Therefore, there are 39270 ways in which prizes can be awarded.
Answer: 14cm
Step-by-step explanation:
The diameter of a circle is twice the radius.
Therefore, the diameter = 2*7 cm = 14cm