Then everyone would fall off the surface
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

I’m lost at this question, sorry but I would’ve help !
Answer:
See the answers below.
Explanation:
We will solve this problem by calculating each part separately.
A 500 W hair dyer is used to dry hair for 6 minutes a day for 3 days.
Energy can be calculated by multiplying the value of the power of the equipment by the amount of time of use.
![500 [W]*[\frac{6min}{1day} ]*[\frac{1day}{24hr} ]*[\frac{1hr}{60min} ]=2.083 [W]](https://tex.z-dn.net/?f=500%20%5BW%5D%2A%5B%5Cfrac%7B6min%7D%7B1day%7D%20%5D%2A%5B%5Cfrac%7B1day%7D%7B24hr%7D%20%5D%2A%5B%5Cfrac%7B1hr%7D%7B60min%7D%20%5D%3D2.083%20%5BW%5D)
The cots of electricity is 5.6 cents per kWh. How much would it cost to operate the laptop for 24 hours a day for one week?
We know that the power of the latop is 75 [W], then we can calculate the cost, multiplying the value of the power by the value of the cost by the time of use of the computer.
![0.075[kW]*5.6[\frac{cents}{kw*h}}]*[\frac{24hr}{1day}]*[1week]*[\frac{7days}{1week} ]=70.56 [cents]](https://tex.z-dn.net/?f=0.075%5BkW%5D%2A5.6%5B%5Cfrac%7Bcents%7D%7Bkw%2Ah%7D%7D%5D%2A%5B%5Cfrac%7B24hr%7D%7B1day%7D%5D%2A%5B1week%5D%2A%5B%5Cfrac%7B7days%7D%7B1week%7D%20%5D%3D70.56%20%5Bcents%5D)
A toaster oven is 85% efficient. It uses 1200 J of energy. How much thermal energy is it producing?
Efficiency is defined as the relationship between the energy obtained on the energy delivered. Almost always the energy delivered is greater than the energy obtained (first law of thermodynamics).
Therefore.
![Effic = E_{obtained}/E_{delivered}\\0.85=E_{obtained}/1200\\E_{obtained}=1020[J]](https://tex.z-dn.net/?f=Effic%20%3D%20E_%7Bobtained%7D%2FE_%7Bdelivered%7D%5C%5C0.85%3DE_%7Bobtained%7D%2F1200%5C%5CE_%7Bobtained%7D%3D1020%5BJ%5D)