Answer:
A=z+n
A=20+20
A=40
Explanation:
Not sure if I'm correct but I was taught that mass number is calculated by A=z+n where A is the mass number, z is the proton number and n is the number of neutrons.
Answer:
174.85 W
Explanation:
Area of plate = 3.14 x (15x 10⁻²)²
= 706.5 x 10⁻⁴ m²
heat being radiated by convection = 12 x 706.5 x 10⁻⁴ ( 180 - 15 )
= 139.88 W. This energy needs to be fed by heat source to maintain a constant temperature of 180 degree.
If power of electric source is P
P x .8 = 139.88
P = 139.88 / .8
= 174.85 W
Now for this problem, what is given is a 40 Newtons which would represent the force to be applied to the object, and a distance of 10 meters after the application of the said force. When these two combine, work is done. The unit for work is Joules and this is what we are looking for. The formula to get Joules or for work would be the force applied to the object multiplied by the distance that it travelled after the application of the force. It looks like this
work = force x distance
Joules = Newtons x meter
so let us substitute the variables to their corresponding places
Joules = 40 N x 10 m
Joules = 400 J
So the answer to this question would be C. 400 J
To solve this problem, it is necessary to apply the concepts related to force described in Newton's second law, so that
F = ma
Where,
m = mass
a = Acceleration (Gravitational acceleration when there is action over the object of the earth)
Torque, as we know, is the force applied at a certain distance, that is,

Where
F= Force
d = Distance
Our values are given as,



Since the system is in equilibrium the difference of the torques is the result of the total Torque applied, that is to say






Therefore the magnitude of the frictional torque at the axle of the pulley if the system remains at rest when the balls are released is 