Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.
The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.
Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.
The acceleration due to gravity is g/4
The acceleration above the earth surface is given by the relation
g^'=gr^2/〖(h+r)〗^2
Since the satellite orbits the earth in a orbit of radius equal to earth radius, therefore
g^'=(gr^2)/〖(r+r)〗^2 =g/4
Thus the acceleration due to gravity on the satellite is g/4.
Answer:
112.58
Explanation:
The Coefficient of Performance of any system is denoted by COP=Q/W, where Q is the useful heat supplied or removed and W is the work required by the system. According to the first law of thermoddynamics Qh= Qc + W, where Qh is the heat transfered to the hot reservoir and Qc is the heat collected from the cold reservoir. Substituting the values for W and apllying the limitation for maximum theoretical efficiency we end up with the eqution shown below.
The Coefficient of Performance of air conditioner or COP is denoted by
COP(cool) = Tc/(Th- Tc)
where Tc: the lowest temperature
Th: the highest temperature
converting the values to Kelvin and adding them in the above equation
COP(cool) = (25+273)/((34+273)-(25+273))
= 298/(307-298)
= 298/9 = 33.11
From the question, it is stated that COP=SEER/3.4
hence, SEER= COP * 3.4
SEER= 33.11 * 3.4 = 112.58