There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
75 percent off of water and please water the light water and water water and then go back and please water pollution please 880m
The heat capacity and the specific heat
Answer:
Explanation:
The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object.
Answer:
c large, spherical body that orbits in a clear path around a star
Explanation:
you can not say b because the sun is a star and you cant say a and d because all planets are not made of rock and all planets are not made of gas