X² + 1 = 0
=> (x+1)² - 2x = 0
=> x+1 = √(2x)
or x - √(2x) + 1 = 0
Now take y=√x
So, the equation changes to
y² - y√2 + 1 = 0
By quadratic formula, we get:-
y = [√2 ± √(2–4)]/2
or √x = (√2 ± i√2)/2 or (1 ± i)/√2 [by cancelling the √2 in numerator and denominator and ‘i' is a imaginary number with value √(-1)]
or x = [(1 ± i)²]/2
So roots are [(1+i)²]/2 and [(1 - i)²]/2
Thus we got two roots but in complex plane. If you put this values in the formula for formation of quadratic equation, that is x²+(a+b)x - ab where a and b are roots of the equation, you will get the equation
x² + 1 = 0 back again
So it’s x=1 or x=-1
Answer:
58.0
Step-by-step explanation:
Literally, i just counted since it's odd and it just lands on 1 number which was 58.0
Answer: To know whether a radical expression is in simplest form or not you should put the numbers and letters inside the radical in terms of prime factors. Then, the radical expression is in the simplest form if all the numbers and letters inside the radical are prime factors with a power less than the index of the radical
Explanation:
Any prime factor raised to a power greater than the index of the root can be simplified and any factor raised to a power less than the index of the root cannot be simplified
For example simplify the following radical in its simplest form:
![\sqrt[5]{3645 a^8b^7c^3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3645%20a%5E8b%5E7c%5E3%7D%20)
1) Factor 3645 in its prime factors: 3645 = 3^6 * 5
2) Since the powr of 3 is 6, and 6 can be divided by the index of the root, 5, you can simplify in this way:
- 6 ÷ 5 = 1 with reminder 1, so 3^1 leaves the radical and 3^1 stays in the radical
3) since the factor 5 has power 1 it can not leave the radical
4) the power of a is 8, then:
8 ÷ 5 = 1 with reminder 3 => a^1 leaves the radical and a^3 stays inside the radical.
5) the power of b is 7, then:
7 ÷ 5 = 1 with reminder 2 => b^1 leaves the radical and b^2 stays inside the radical
6) the power of c is 3. Since 3 is less than 5 (the index of the radical) c^3 stays inside the radical.
7) the expression simplified to its simplest form is
![3ab \sqrt[5]{3.5.a^3b^2c^3}](https://tex.z-dn.net/?f=3ab%20%5Csqrt%5B5%5D%7B3.5.a%5E3b%5E2c%5E3%7D%20)
And you know
it cannot be further simplified because all the numbers and letters inside the radical are prime factors with a power less than the index of the radical.
Answer:
The is answer is the last one.
Step-by-step explanation:
I just took the test
Answer:
x=35, y=21. (35, 21).
Step-by-step explanation:
x+y=56
x-y=14
------------
2x=70
x=70/2
x=35
35+y=56
y=56-35
y=21