Answer:

Step-by-step explanation:
Equation of the line that passes through (-2, 8) with a slope of 0, can be written in point-slope form,
and also in slope-intercept form,
.
Using a point, (-2, 8) and the slope (m), 0, substitute x1 = -2, y1 = 8 and m = 0 in
.
Thus:


Rewrite in slope-intercept form
(addition property of equality)

Answer:
bottom side (a) = 3.36 ft
lateral side (b) = 4.68 ft
Step-by-step explanation:
We have to maximize the area of the window, subject to a constraint in the perimeter of the window.
If we defined a as the bottom side, and b as the lateral side, we have the area defined as:

The restriction is that the perimeter have to be 12 ft at most:

We can express b in function of a as:

Then, the area become:

To maximize the area, we derive and equal to zero:

Then, b is:

Answer:
Not sure 737
Step-by-step explanation:
Refer the attached figure for the graphic representation of the given quadratic equation.
<u>Step-by-step explanation:</u>
Given expression:

To find:
The graphic representation of the given quadratic function
For solution, plot the graph to the given quadratic equation.
The standard form of the equation is

When comparing with given quadratic equation,
a = 1, b = - 8, c = 24
Axis of symmetry is 
By applying the values, the axis of symmetry of given equation is

The vertex form of quadratic equation is 
Where, (h,k) are the vertex.
Convert the quadratic equation into vertex form.
By completing the square,



On comparison,
(h , k) = (4 , 8)
Now, plot the equation with vertex (4,8) [refer attached figure].