Answer:
class TriangleNumbers
{
public static void main (String[] args)
{
for (int number = 1; number <= 10; ++number) {
int sum = 1;
System.out.print("1");
for (int summed = 2; summed <= number; ++summed) {
sum += summed;
System.out.print(" + " + Integer.toString(summed));
}
System.out.print(" = " + Integer.toString(sum) + '\n');
}
}
}
Explanation:
We need to run the code for each of the 10 lines. Each time we sum numbers from 1 to n. We start with 1, then add numbers from 2 to n (and print the operation). At the end, we always print the equals sign, the sum and a newline character.
Answer:
The answer is "
".
Explanation:
Please find the correct question in the attachment file.
using formula:



Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in
Answer with Explanation:
Part a)
The volume of water in the tank as a function of time is plotted in the below attached figure.
The vertical intercept of the graph is 46.
Part b)
The vertical intercept represents the volume of water that is initially present in the tank before draining begins.
Part c)
To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

Part d)
The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.