Answer:
F₁ = 1500 N
F₂ = 750 N
= 500 N
Explanation:
Given :
Power transmission, P = 7.5 kW
= 7.5 x 1000 W
= 7500 W
Belt velocity, V = 10 m/s
F₁ = 2 F₂
Now we know from power transmission equation
P = ( F₁ - F₂ ) x V
7500 = ( F₁ - F₂ ) x 10
750 = F₁ - F₂
750 = 2 F₂ - F₂ ( ∵F₁ = 2 F₂ )
∴F₂ = 750 N
Now F₁ = 2 F₂
F₁ = 2 x F₂
F₁ = 2 x 750
F₁ = 1500 N , this is the maximum force.
Therefore we know,
= 3 x
where is centrifugal force
= / 3
= 1500 / 3
= 500 N
Answer:
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Explanation:
The distance formula is the difference of the x coordinates squared, plus the difference of the y coordinates squared, all square rooted. For the general case, it appears you simply need to change how you have written the code.
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Note, by moving the 2 inside of the pow function, you have provided the second argument that it is requesting.
You were close with your initial attempt, you just had a parenthesis after x1 and y1 when you should not have.
Cheers.
Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.
Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m