Answer: C
Step-by-step explanation: It's the most logical.
and don't lie. We all know you watch dora more.
Answer:
So about 95 percent of the observations lie between 480 and 520.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviations of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
The mean is 500 and the standard deviation is 10.
About 95 percent of the observations lie between what two values?
From the Empirical Rule, this is from 500 - 2*10 = 480 to 500 + 2*10 = 520.
So about 95 percent of the observations lie between 480 and 520.
Answer:
A.S.A congurency.
please mark me brainliest and follow me my friend.
Answer:
Binomial distribution requires all of the following to be satisfied:
1. size of experiment (N=27) is known.
2. each trial of experiment is Bernoulli trial (i.e. either fail or pass)
3. probability (p=0.14) remains constant through trials.
4. trials are independent, and random.
Binomial distribution can be used as a close approximation, with the usual assumption that a sample of 27 in thousands of stock is representative of the population., and is given by the probability of x successes (defective).
P(x)=C(N,x)*p^x*(1-p)^(n-x)
where N=27, p=0.14, and C(N,x) is the number of combinations of x items out of N.
So we need the probability of <em>at most one defective</em>, which is
P(0)+P(1)
= C(27,0)*0.14^0*(0.86)^(27) + C(27,1)*0.14^1*(0.86^26)
=1*1*0.0170 + 27*0.14*0.0198
=0.0170+0.0749
=0.0919