According to Raoult's low:
We will use this formula: Vp(Solution) = mole fraction of solvent * Vp(solvent)
∴ mole fraction of solvent = Vp(Solu) / Vp (Solv)
when we have Vp(solu) = 25.7 torr & Vp(solv) = 31.8 torr
So by substitution:
∴ mole fraction of solvent = 25.7 / 31.8 =0.808
when we assume the moles of solute NaCl = X
and according to the mole fraction of solvent formula:
mole fraction of solvent = moles of solvent / (moles of solvent + moles of solute)
by substitute:
∴ 0.808 = 0.115 / (0.115 + X)
So X (the no.of moles of NaCl) = 0.027 m
The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490
- C_5H_8+13/2O_2—»5CO_2+4H_2O
Balanced one
- 2C_5H_8+13O_2—»10CO_2+8H_2O
Moles of Pentyne
- Given mass/Molarmass
- 34/68
- 0.5mol
Moles of H_2O
1mol releases 241.8KJ
2mol releases 241.8(2)=483.6KJ
The answer is B I hope this helps you
NH4I (aq) + KOH (aq) in chemical equation gives
NH4I (aq) + KOH (aq) = KI (aq) + H2O(l) + NH3 (l)
Ki is in aqueous state H2o is in liquid state while NH3 is in liquid state
from the equation above 1 mole of NH4I (aq) react with 1 mole of KOH(aq) to form 1mole of KI(aq) , 1mole of H2O(l) and 1 Mole of NH3(l)