Answer:
Density rectangular block = 7.47 (Approx) gm/cm³
Explanation:
Given:
Length = 8.335 cm
Width = 1.02 cm
Height = 0.982 cm
Mass = 62.3538 gm
Find:
Density rectangular block
Computation:
Volume of block = lbh
Volume of block = (8.335)(1.02)(0.982)
Volume of block = 8.3486 cm³
Density = Mass / Volume
Density rectangular block = 62.3538 / 8.3486
Density rectangular block = 7.47 (Approx) gm/cm³
The coriolis force caused by the Earth's rotation is what gives winds within high-pressure systems their clockwise circulation in the northern hemisphere (as the wind moves outward and is deflected right from the center of high pressure) and counterclockwise circulation in the southern hemisphere (as the wind moves ...
Answer:
3.2 L
Explanation:
Given data:
Mass of oxygen = 3.760 g
Pressure of gas = 88.4 Kpa (88.4×1000 = 88400 Nm⁻²)
Temperature = 19°C (19+273.15 = 292.15 K)
R = 8.314 Nm K⁻¹ mol⁻¹
Volume occupied = ?
Solution:
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 3.760 g/ 32 g/mol
Number of moles = 0.12 mol
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant
T = temperature in kelvin
V = nRT/P
V = 0.12 mol × 8.314 Nm K⁻¹ mol⁻¹ × 292.15 K /88400 Nm⁻²
V = 291.472 Nm /88400 Nm⁻²
V = 0.0032 m³
m³ to L:
V = 0.0032×1000 = 3.2 L
Answer:

Explanation:
Hello,
Based on the given reaction, since magnesium and water are in a 1:2 molar ratio at the reactants, we must apply the following stoichiometric factors to compute the complete reaction of the 6.0 g of magnesium:

Best regards.