Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
The answer should be A.
Hope this helps :-)
Answer:
Explanation:
the molecular mass of Na2C6H6O7 =236 g\mole it has a sodium that has 23 g/mole so 7.6 g of Na2C6H6O7 has x of sodium mass
236 g/mole ⇒ 23g/mole
<h2> 7.6 g ⇒ ˣ </h2>
7.6 x 23 ÷ 236 = 74.07×10-2 grams of sodium
<h2 />
Answer:
It's obviously true
Explanation:
As we have evolved over the years we have become more advanced
Answer:
ionic bonding occurs when unstable atoms donates one or more valence electrons to a unstable atom
Explanation: