1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
2 years ago
11

The lot is 48 feet wide. The dividers are each 2 feet wide.

Mathematics
1 answer:
ivann1987 [24]2 years ago
7 0
The answer is 24 bc 48 divided by 2 equals 24
You might be interested in
Clarissa has a budget of $1,200 a month to spend for rent and food. She has already spent $928 this month. Which inequality repr
Leviafan [203]
The answer is b. x(< with a line under it) 272
8 0
2 years ago
Read 2 more answers
4. Andrés desea embaldosar el piso de su casa que tiene 375 cm de ancho y 435 cm de largo. Calcula la longitud del lado que tend
svetlana [45]

Answer:

Sabemos que el piso es un rectángulo de 435 cm de largo y 375 cm de ancho.

Recordar que para un rectángulo de largo L, y ancho W, el área es:

A = L*W

Entonces el área del piso, será:

A = 435cm*375cm = 163,125 cm^2

Primero, sabemos que se utilizaran baldosas (las cuales son cuadradas) y queremos saber la longitud de lado que tendrían las baldosas.

No tenemos ningún criterio para encontrar este lado, solo que (si queremos usar un número entero de baldosas) el largo L del lado de la baldosa deberá ser un divisor de tanto el ancho como el largo del suelo.

Dicho de otra forma

el largo, 435cm, tiene que ser múltiplo de L

el ancho, 375cm, tiene que ser múltiplo de L.

Por ejemplo, ambos números son múltiplos de 5, entonces podríamos tomar L = 5cm

En este caso, el área de cada baldosa es:

a = L^2 = 5cm*5cm = 25cm^2

Y el número total de baldosas que necesitaría usar esta dado por el cociente entre el área del suelo y el area de cada baldosa.

N = ( 163,125 cm^2)/(25cm^2) = 6,525 baldosas.

También sabemos que ambos números (435cm y 375cm) son múltiplos de 15cm

Entonces las baldosas podrían tener 15cm de lado.

En este caso, el área de cada baldosa es:

A = (15cm)^2 = 225cm

En este caso el número total de baldosas necesarias será:

N =  ( 163,125 cm^2)/(225cm^2) = 725 baldosas.

5 0
3 years ago
If you had to pick a number 1-4 what would be the luckiest?
earnstyle [38]

I always feel drawn to the number 2 for some reason because it is in the middle between 2 and four and usually when given an option to pick a number I never pick a number that they say. Personally I just feel drawn to pick the number 2 its a nice even number and perhaps could be lucky :)

3 0
3 years ago
Help on this math question. 25 points.
solniwko [45]

Answer:

the third one

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Pls need this for today (geometry) all the info I have for the question
Nezavi [6.7K]

Answer:

Step-by-step explanation:

the triangles are similar, also is a right triangle

therefore

16/8=10/x

x=(8*10)/16=5

x=5

3 0
3 years ago
Other questions:
  • Find the circumference and Area of a circle with radius 7 yd<br> Use the value 3.14 to help
    12·1 answer
  • For the function, f(x)=2x+1, which outputs match the inputs​
    10·1 answer
  • A rectangular vegetable patch is 93 feet long and 37 feet wide. What is its area?
    8·1 answer
  • Gold has a density of 19.3 ​ g/cm3 ​, it is often made into a bar called a gold ingot. A certain gold ingot has a volume 51.8 cm
    14·2 answers
  • Y + 4 = x - 3<br> how do I graph this??
    11·1 answer
  • Find the slope of a pipe that slopes down 1/3 inch per foot
    6·1 answer
  • Solve using completing the square method 12 x square + 7 x square - 12 is equals to zero​
    9·1 answer
  • Answer this, please!! Its urgent
    11·2 answers
  • PLZZZ HELPPP!! THIS IS TIMEDDD!!!! *look at picture*
    7·2 answers
  • Rachel moved a point from the origin 3 units left on the x-axis. Then, she moved it up 2 units on the y-axis. What is the new lo
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!