The intersection of two planes is a line.
(3p)(3p) or 3p x 3p. Cause the exponent means 3p times 3p
Answer:
a. 24 ÷ 3 = 8 ⇒ i. 8 × 3 ÷ (6 − 3) = 8
b. 53 × 7 = 371 ⇒ h. (8 × 7 − 3) × 7 = 371
g. 8 × (5 × 12 − 10) = 400 ⇒ f. 8 × 50 = 400
Step-by-step explanation:
Given:
We have to match the equivalent expressions:
a. 24 ÷ 3 f. 8 × 50
b. 53 × 7 g. 8 × (5 × 12 − 10)
c. 56 − 21 h. (8 × 7 − 3) × 7
d. 4 − 3 i. 8 × 3 ÷ (6 − 3)
e. 40 × 2
Solution:
a. 24 ÷ 3 = 8
b. 53 × 7 = 371
c. 56 − 21 = 35
d. 4 − 3 = 1
e. 40 × 2 =80
f. 8 × 50 = 400
g. 8 × (5 × 12 − 10) <em>Using PEMDAS rule.</em>
⇒ 
⇒ 
⇒
h. (8 × 7 − 3) × 7
⇒ 
⇒ 
⇒ 
i. 8 × 3 ÷ (6 − 3) = 8
⇒ 
⇒ 
⇒ 
Answers:
a. 24 ÷ 3 = 8 ⇒ i. 8 × 3 ÷ (6 − 3) = 8
b. 53 × 7 = 371 ⇒ h. (8 × 7 − 3) × 7 = 371
g. 8 × (5 × 12 − 10) = 400 ⇒ f. 8 × 50 = 400
c,d and e didn't have any match
a is equivalent to i,b equivalent to h and g is equivalent to f.
<em>Solid transformation</em> is a <u>method</u> that requires a change in the <u>length </u>of sides of a given shape or a change in its <em>orientation</em>. Thus the required <u>answers</u> are:
i. Yes, line <em>segment</em> AB is <em>the same</em> as line <u>segment </u>CD.
ii. This implies that <u>translation</u> does not affect the<u> length </u>of a given<u> line,</u> but there is a change in its <em>location</em>.
<em>Solid transformation</em> is a <u>method</u> that requires a change in the <u>length </u>of sides of a given shape or a change in its <em>orientation</em>. Some types of <em>transformation</em> are reflection, translation, dilation, and rotation.
- <u>Dilation</u> is a method that requires either <u>increasing</u> or <u>decreasing</u> the <em>size</em> of a given <u>shape</u>.
- <u>Translation</u> is a process that involves moving <em>every point </em>on the <u>shape</u> in the same <u>direction</u>, and the same <u>unit</u>.
- <u>Reflection</u> is a method that requires <em>flipping</em> a given <u>shape</u> over a given reference<u> point</u> or<u> line.</u>
- <em>Rotation</em> requires <u>turning</u> a given <em>shape</em> at an <u>angle</u> about a given reference <u>point</u>.
Thus in the given question, <u>translation</u> would not affect the <u>length</u> of <em>line</em> <em>segment</em> AB, thus <em>line segment</em> AB and CD are the same. Also, A <u>translated</u> <em>line segment</em> would have the same <u>length</u> as its object, but at another <u>location</u>.
For more clarifications on translation of a plane shape, visit: brainly.com/question/21185707
#SPJ1