Answer:
y = (2/5) OR y = (6/5)
Step-by-step explanation:
The first step is isolating the expression within the absolute value bars. The first thing we can do is subtract both sides by 8. If we do that, we get -2|4-5y| = -4. Now, to completely isolate the absolute value, we would have to divide by -2. This yields |4 - 5y| = 2. Finally, we can remove the absolute value bars. However, to do this, we need to first understand what an absolute value bar does to an equation. Lets say that |x| = 2. Absolute value describes the DISTANCE of some quantity from 0 (on the number line). Therefore, x (which is inside the absolute value bars) can be either positive or negative 2 (they are BOTH two units away from 0). Similarly, in this case, (4 - 5y) can either be 2 or -2 (because the absolute value of both is 2). Now we have two possible solutions to solve for:
4 - 5y = 2 OR 4 - 5y = -2
5y = 2 OR 5y = 6
y = (2/5) OR y = (6/5)
If we plug both of these answers back into the equation we can see that they both check out.
Answer:
A - 8x + 6x² + 2x
Step-by-step explanation:
source: trust me bro
4.428571
I know because I googled it
Voltage= Current * Resistance
Plug in your values and solve for 'x' or resistance
Answer:
Let x = the third side
In a triangle, the sum of any 2 sides must be larger than the third side.
I believe this is called the triangle inequality theorem.
We can construct 3 inequalities to obtain the range of values for the third side.
(Inequality #1) 12 + 4 > x
16 > x
(Inequality#2) 12 + x > 4
x > -8 (we can discard this ... we know all sides will be positive)
(Inequality #3) 4 + x > 12
x > 8
So when we combine these together,
8 < x < 16
X (the third side) must be a number between 8 and 16. but not including 8 and 16