1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
10

Which table represents a function

Mathematics
1 answer:
solong [7]3 years ago
4 0

Answer:

The last one

Step-by-step explanation:

A function is where every x has only one y value.

You might be interested in
Math Help
-Dominant- [34]
X=1, because they both have the same height (y), so they'll cross each other!
4 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
What is the slope of the line on the graph ?
Minchanka [31]

Answer is -2

Step-by step solution:

5 0
2 years ago
Pentagon RSTUV is circumscribed about a circle. What is the value of x if RS = 8, ST = 12, TU = 15, UV = 9, and VR = 12?
ivanzaharov [21]

Answer:

The value of x is 7 ⇒ 1st answer

Step-by-step explanation:

* Lets revise a fact in the circle

- The two tangents drawn from a point out side the circle are equal

∵ RSTUV is circumscribed about a circle

∴ Each side of the pentagon is a tangent to the circle

- Look to the attached figure to know how we will solve the problem

- Each tangent divided into two parts

# RS = x + y

∵ RS = 8

∴ x + y = 8 ⇒ (1)

# RV = x + n

∵ RV = 12

∴ x + n = 12 ⇒ (2)

- Subtract (2) from (1)

∴ y - n = -4 ⇒ (3)

# ST = y + z

∵ ST = 12

∴ y + z = 12 ⇒ (4)

# TU = z + m

∵ TU = 15

∴ z + m = 15 ⇒ (5)

- Subtract (5) from (4)

∴ y - m = -3 ⇒ (6)

# UV = m + n

∵ UV = 9

∴ m + n = 9 ⇒ (7)

- Add (6) and (7)

∴ y + n = 6 ⇒ (8)

- Lets solve equation (3) and equation (8) to find y

∵ y - n = -4 ⇒ (3)

∵ y + n = 6 ⇒ (8)

- Add (3) and (8)

∴ 2y = 2 ⇒ divide two sises by 2

∴ y = 1

- Lets substitute the value of y in equation (1)

∵ x + y = 8 ⇒ (1)

∵ y = 1

∴ x + 1 = 8 ⇒ subtract (1) from both sides

∴ x = 7

* The value of x is 7

3 0
3 years ago
Use the Factor Theorem to show that (x - 3) is a factor of the polynomial
Katyanochek1 [597]

Answer:

<em>P(3) = 0</em>

Step-by-step explanation:

<u>Factor Theorem is a consequence of Remainder Theorem. </u>

Remainder Theorem states that if polynomial f(x) is divided by a binomial (x - a) then the remainder is f(a).

Factor Theorem states that if f(a) = 0, then the binomial (x - a) is a factor of f(x).

We have the polynomial

P(x) = x^5-3x^4+5x^3-15x^2-6x+18

To prove that x-3 is a factor of P, we calculate P(3):

P(3) = 3^5-3*3^4+5*3^3-15*3^2-6*3+18

P(3) = 243-243+135-135-18+18

P(3) = 0

Thus, x-3 is a factor of P(x)

7 0
3 years ago
Other questions:
  • Which expression gives the distance between the points (5. 1) and (9, -6)?
    11·1 answer
  • Evaluate The Exsperession. Show your work<br><br><br>6.7-3^2.9+4^3<br>or
    8·2 answers
  • The movie theater sold 56 boxes of gummy bears during the week.At this rate how many boxes of gummy bears will the movie theater
    11·2 answers
  • Simplify 35.36 over 17
    6·1 answer
  • What does 6×3000= equal
    5·2 answers
  • Help - algebra 1!!!!!!!!!!!
    8·1 answer
  • What are the zeros of (3x−2)(x+4)
    11·1 answer
  • 1. Name of the missing segment.<br> 2.Length of the missing segment.
    8·2 answers
  • A military cannon is placed at the base of a hill. The cannon is fired at an angle toward the hill. The path
    8·1 answer
  • A card is drawn from a standard deck, not replaced, and another is drawn. What is the probability of choosing a heart then a spa
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!