5 over the power if two divide 6 from what you get and that is your answer
Answer:
Part 1) 
Part 2) 
Part 3) 
Step-by-step explanation:
Part 1) Find the measure of angle ECF
we know that
CF is tangent at point C
so
the radius EC is perpendicular to the tangent CF
therefore

Part 2) Find the measure of angle AKB
we know that
The measure of the interior angle is the semi-sum of the arcs comprising it and its opposite

substitute the values

Part 3) Find the measure of angle ACF
we know that
The inscribed angle is half that of the arc it comprises

substitute the values

Answer:
b=1-a
Step-by-step explanation:
Inside parenthesis
1/1=1
(replace it with that)
Open parenthesis
a=2-1-b
simplify numbers
a=1-b
isolate b
a-1=-b
multiple each side by negative 1
1-a=b
Answer:
x = 2
y = - z (for example 2)
Step-by-step explanation:
2³+2³+(-2)³= 8+8-8=8
Given: An Isosceles trapezoid EFGH in which EF =GH
To prove: ΔFHE ≅ ΔGEH
Proof: In Isosceles trapezoid EFGH, Considering two triangles ΔFHE and ΔGEH
1. FE ≅ G H → [ Given]
2. ∠H = ∠E
→ Draw GM⊥HE and FN ⊥EH, and In Δ GMH and ΔFNE,
GH=FE [Given]
∠M+∠N=180° so GM║FN and GF║EH, So GFMN is a rectangle.]
∴ GM =FN [opposite sides of rectangle]
∠GMH = ∠FNE [ Each being 90°]
Δ GMH ≅ ΔFNE [ Right hand side congruency]
→∠H =∠E [CPCT]
→ Side EH is common i.e EH ≅ EH .
→ΔFHE ≅ ΔGEH. [SAS]