Answer:
Explanation:
This is a direct application of the equation for ideal gases.
Where:
- P = pressure = 1.25 atm
- V = volume = 25.2 liter
- R = Universal constant of gases = 0.08206 atm-liter/K-mol
- T = absolute temperature = 25.0ºC = 25 + 273.15 K = 298.15 K
- n = number of moles
Solving for n:
Substituting:

Answer: Correct options are as follows.
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
Explanation:
When salt is dissolved in water then it means that it is a physical change as salt has completely dissociated into ions but they are not chemically combined to the water molecules.
As a result, both salt and water will retain their chemical properties.
For example, NaCl when dissolved in water will dissociate as follows.

Only the particles of salt have evenly distributed in water.
And, when a components of a salt chemically combine with another substance then it will form a new compound.
Therefore, we can conclude that salt dissolved in water is a solution, therefore:
- salt is not chemically bonded to water.
- salt and water retain their own chemical properties.
To calculate for the volume, we need a relation to relate the number of moles (n), pressure (P), and temperature (T) with volume (V). For simplification, we assume the gas is an ideal gas. So, we use PV=nRT.
PV = nRT where R is the universal gas constant
V = nRT / P
V = 65.5 ( 0.08205 ) (273.15 + 50.30) / 9.15
V = 189.98 L
(3) <span>electronegativities of the bonded atoms in a molecule of the compound is the correct answer.
The compound is nonpolar when</span> electronegativity is from 0 to 0.5, polar when electronegativity is from 0.5 to 1.7, and ionic when electronegativity is larger than 1.7.
Hope this would help~