<span>Pre-1982 definition of STP: 37 g/mol
Post-1982 definition of STP: 38 g/mol
This problem is somewhat ambiguous because the definition of STP changed in 1982. Prior to 1982, the definition was 273.15 K at a pressure of 1 atmosphere (101325 Pascals). Since 1982, the definition is 273.15 K at a pressure of exactly 100000 Pascals). Because of those 2 different definitions, the volume of 1 mole of gas is either 22.414 Liters (pre 1982 definition), or 22.71098 liters (post 1982 definition). And finally, there's entirely too many text books out there that still use the 35 year obsolete definition. So let's solve this problem using both definitions and you need to pick the correct answer for the text book you're using.
First, determine how many moles of gas you have. Just simply divide the volume you have by the molar volume.
Pre-1982: 2.1 / 22.414 = 0.093691443 moles
Post-1982: 2.1 / 22.71098 = 0.092466287 moles
Now determine the molar mass. Simply divide the mass by the moles. So
Pre-1982: 3.5 g / 0.093691443 moles = 37.35666667 g/mol
Post-1982: 3.5 g / 0.092466287 moles = 37.85163333 g/mol
Finally, round to 2 significant figures. So
Pre-1982: 37 g/mol
Post-1982: 38 g/mol</span>
CH3-CH=CH2+Br2--->CH3-CH(Br)-CH2-Br
Given what we know about ratios, we can confirm that in comparison to the iron pan, the aluminum pan will receive twice as much heat.
<h3>Why would the aluminum pan receive double the heat?</h3>
- This has to do with the ratio being presented.
- A ratio of 2:1 means that for every unit of heat to the iron, the aluminum receives 2.
- In other words, the aluminum pan receives twice as much heat when compared to the iron pan.
Therefore, we can confirm that because the ratio of heat to the aluminum in comparison to the iron pan is 2:1, this means that for every 1 unit of heat to the iron pan, the aluminum pan will receive 2. This results in double the total heat received by the aluminum pan.
To learn more about ratios visit:
brainly.com/question/1504221?referrer=searchResults
Yes, IF entropy is high enough