Answer:
see the explanation
Step-by-step explanation:
<u><em>Verify each case</em></u>
Part 1) The graph show two identical lines, then the system has infinitely many solutions
Part 2) The graph show two perpendicular lines.
Remember that the solution of the system is the intersection point both graphs
The intersection point is (2,6)
therefore
The system has one solution at (2,6)
Part 3) The graph show two intersecting lines at (-6,-2)
Remember that the solution of the system is the intersection point both graphs
The intersection point is (-6,-2)
therefore
The system has one solution at (-6,-2)

The Quadratic Function has the domain as the set of all real numbers.
For the range, start from minimum value to maximum value.
But because the parabola is downward as a < 0. Thus, there are no minimum value but the maximum value instead.
Therefore the range is y <= -4
Answer:
100-x
Step-by-step explanation:
Hope this helps:)
Answer:
The value of AB is
and it's not possible to multiply BA.
Step-by-step explanation:
Consider the provided matrices.
, ![B=\left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Two matrices can be multiplied if and only if first matrix has an order m × n and second matrix has an order n × v.
Multiply AB
Matrix A has order 2 × 2 and matrix B has order 2 × 1. So according to rule we can multiply both the matrix as shown:
![AB=\left[\begin{array}{ccc}2&3\\2&1\end{array}\right] \left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C2%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}2\times 3+3\times 5\\2\times 3+1\times 5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5Ctimes%203%2B3%5Ctimes%205%5C%5C2%5Ctimes%203%2B1%5Ctimes%205%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}6+15\\6+5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%2B15%5C%5C6%2B5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Hence, the value of AB is ![\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Now calculate the value of BA as shown:
Multiply BA
Matrix B has order 2 × 1 and matrix A has order 2 × 2. So according to rule we cannot multiply both the matrix.
We can multiply two matrix if first matrix has an order m × n and second matrix has an order n × v.
That means number of column of first matrix should be equal to the number of rows of second matrix.
Hence, it's not possible to multiply BA.
It's 78π inches so probably d.