Answer:

Explanation:
To convert from moles to grams, the molar mass is used (mass of 1 mole). The values are the same as the atomic masses on the Periodic Table, but the units are grams per mole (g/mol) instead of atomic mass units.
<h3>1. Molar Mass</h3>
We are given the compound sodium hydroxide (NaOH) and we need to look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- O: 15.999 g/mol
- H: 1.008 g/mol
The formula for the compound has no subscripts, so there is 1 mole of each element in 1 mole of the substance. We can simply add the molar masses.
- NaOH: 22.9897693 + 15.999 + 1.008 = 39.9967693 g/mol
This means there are 39.9967693 grams of sodium hydroxide in 1 mole.
<h3>2. Convert Grams to Moles </h3>
Use the molar mass we found as a ratio.

Since we are converting 17.6 grams of NaOH to moles, we multiply by this value.

Flip the ratio so the units of grams of NaOH cancel.




<h3>3. Round </h3>
The original measurement of grams has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
The 0 in the ten thousandths place (in bold above) tells us to leave the 0 in the thousandth place.

17.6 grams of sodium hydroxide are equal to <u>0.440 moles of sodium hydroxide.</u>
First we find for the wavelength of the photon released due
to change in energy level. We use the Rydberg equation:
1/ʎ = R [1/n1^2 – 1/n2^2]
where,
ʎ is the wavelength
R is the rydbergs constant = 1.097×10^7 m^-1
n1 is the 1st energy level = 1
n2 is the higher energy level = infinity, so 1/n2 = 0
Calculating for ʎ:
1/ʎ = 1.097×10^7 m^-1 * [1/1^2 – 0]
ʎ = 9.1158 x 10^-8 m
Then calculate the energy using Plancks equation:
E = hc/ʎ
where,
h is plancks constant = 6.626×10^−34 J s
c is speed of light = 3x10^8 m/s
E = (6.626×10^−34 J s * 3x10^8 m/s) / 9.1158 x 10^-8 m
E = 2.18 x 10^-18 J = 2.18 x 10^-21 kJ
This is still per atom, so multiply by Avogadros number =
6.022 x 10^23 atoms / mol:
E = (2.18 x 10^-21 kJ / atom) * (6.022 x 10^23 atoms /
mol)
E = 1312 kJ/mol
Answer: The correct answer is Heterogeneous mixture
Explanation:
Heterogeneous mixture are those mixture in which:
- Substance is distributed in non uniform manner.
- Two distinct layers are formed
Thus when water and dirt are mixed together it results in the formation of a heterogeneous mixture and after sometimes two different layers will be observed.
Hence, in the bottle there is a heterogeneous mixture of water and dirt.
C. Model. It's a graphical model that displays one or more weather elements.