A) because when gas is produced it changes chemical form whereas the chemical change is obvious.
A. False. If it is high tide in one place on Earth, the place exactly opposite to it will also have a <em>high</em> tide.
The gravitational attraction of the Moon and the inertia of the oceans cause <em>two tidal bulges </em>on opposite sides of the Earth.
B. True. Cassini used flybys of Venus, Earth and Jupiter as slingshots to reach Saturn.
C. True. The whole solar system moves around the galaxy.
D. True. If a planet’s gravity is not strong enough, the molecules in its atmosphere will have enough kinetic energy to escape into space.
E. False. The <em>mass of an object is constant</em>, but its <em>weight changes</em> according to the gravity of the planet.
F. False. To find the mass of an object, <em>divide</em> its weight by gravity.
or weight = mass × gravity
∴ <em>Mass = weight/gravity
</em>
Answer:
Ocean Currents
Explanation:
The correct answer is Ocean currents.
When the earth receives solar radiation, a large fraction of this incident radiation is usually absorbed by the oceans and the seas, which become warm. Usually, equitorial regions are the ones that have this phenomenon. Now, when ocean currents are flowing from the equator, they usually carry this warm water with them thereby moving the greatest amount of heat from the equator on its way out.
For example, In the Pacific Ocean, there is a current known as Alaska Current that carries warm water in the northward direction thereby making Anchorage which is Alaska's largest city to have a much mild weather than the inland areas with the same latitude.
Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation:
The enthalpy of combustion of 1 mole of benzene is 3169 kJ/mol .
The first step in answering this question is to obtain the balanced thermochemical equation of the reaction. The thermochemical equation shows the amount of heat lost or gained.
The thermochemical equation for the combustion of benzene is;
2 C6H6(l) + 15 O2(g) → 12 CO2(g) + 6 H2O(g) ΔrH° = -3169 kJ/mol
We can see that 1 mole of benzene releases about 3169 kJ/mol of heat.
Learn more: brainly.com/question/13164491