To find the number of moles from a mass given, simply look to the formula n (moles) = m (mass, g) / MM (molar mass).
Mass was given, 36.04
Molar mass is the total atomic mass of all the atoms present. Water is H20, so that means 2 hydrogen and 1 oxygen. The atomic mass of hydrogen is 1 and atomic mass of oxygen is 16. Therefore MM= 1 + 1 + 16= 18.
Plug that value in and the full equation is
n = 36.04/18
n = 2.002 moles
= 2 moles
The same sample of gas at different temperatures shows that at low
temperatures, most molecules have speeds close to their average
speed.
<h3>
What does the Maxwell-Boltzmann distribution graph show?</h3>
Put simply, a Maxwell-Boltzmann distribution graph shows how the energy of gas particles varies within a system.
This is solely a measurement of the speeds of particles because kinetic energy is directly related to speed.
The Maxwell-Boltzmann distribution in chemistry is the subject of this article.
We will begin by describing how to read a graph of the Maxwell-Boltzmann distribution. This will involve taking a closer look at things like the typical energy and the most likely energy.
The graph will then be changed under various circumstances, such as when a catalyst is added or the temperature is raised.
The Maxwell-Boltzmann distribution, which we previously mentioned, is a probability function that depicts the distribution of energy among the particles of an ideal gas. (For more information on this topic, see Chemical Kinetics.)
To learn more about Maxwell distribution, refer
to brainly.com/question/24419453
#SPJ4
calcium,phosphorus,potassium,and sulfer
Answer:
Judging from the wording of he question, you mean units. If that is indeed the case, the answer is g/Mol (grams per mol)
Let me know if my interpretation is incorrect and please tell me what you are actually trying to find.