Answer:
Here's what I get
Explanation:
Assume the initial concentrations of H₂ and I₂ are 0.030 and 0.015 mol·L⁻¹, respectively.
We must calculate the initial concentration of HI.
1. We will need a chemical equation with concentrations, so let's gather all the information in one place.
H₂ + I₂ ⇌ 2HI
I/mol·L⁻¹: 0.30 0.15 x
2. Calculate the concentration of HI
![Q_{\text{c}} = \dfrac{\text{[HI]}^{2}} {\text{[H$_{2}$][I$_{2}$]}} =\dfrac{x^{2}}{0.30 \times 0.15} = 5.56\\\\x^{2} = 0.30 \times 0.15 \times 5.56 = 0.250\\x = \sqrt{0.250} = \textbf{0.50 mol/L}\\\text{The initial concentration of HI is $\large \boxed{\textbf{0.50 mol/L}}$}](https://tex.z-dn.net/?f=Q_%7B%5Ctext%7Bc%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BHI%5D%7D%5E%7B2%7D%7D%20%7B%5Ctext%7B%5BH%24_%7B2%7D%24%5D%5BI%24_%7B2%7D%24%5D%7D%7D%20%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.30%20%5Ctimes%200.15%7D%20%3D%20%205.56%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.30%20%5Ctimes%200.15%20%5Ctimes%205.56%20%3D%200.250%5C%5Cx%20%3D%20%5Csqrt%7B0.250%7D%20%3D%20%5Ctextbf%7B0.50%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20initial%20concentration%20of%20HI%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.50%20mol%2FL%7D%7D%24%7D)
3. Plot the initial points
The graph below shows the initial concentrations plotted on the vertical axis.
Answer:6.022 x 10^23 molecules
Explanation: Since one mole of any chemical compound always contains 6.022 x 10^23 molecules, you can calculate the number of molecules of any substance if you know its mass and its chemical formula.
The correct answer is option 3. The IUPAC name is Iron(II) sulfide. It is the less stable amorphous form. When this is powdered, it is pyrophoric or it ignites spontaneously in air. It readily reacts with hydrochloric acid producing hydrogen sulfide.
A geological process changes the Earth's surface.