The answer would be B: In the Earth’s atmosphere!.
Hope this helps,
Answer:
1.
was the
value calculated by the student.
2.
was the
of ethylamine value calculated by the student.
Explanation:
1.
The
value of Aspirin solution = 2.62
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-2.62}=0.00240 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2.62%7D%3D0.00240%20M)
Moles of s asprin = 
Volume of the solution = 0.600 L
The initial concentration of Aspirin = c = 

initially
c 0 0
At equilibrium
(c-x) x x
The expression of dissociation constant :
:



was the
value calculated by the student.
2.
The
value of ethylamine = 11.87


![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-2.13}=0.00741 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-2.13%7D%3D0.00741%20M)
The initial concentration of ethylamine = c = 0.100 M

initially
c 0 0
At equilibrium
(c-x) x x
The expression of dissociation constant :
:



was the
of ethylamine value calculated by the student.
Answer:

Explanation:
First, find the mass of empirical formula, CH. 12.01 g/mol is for carbon, and 1.008 g/mol is for hydrogen. 12.01+1.008=13.018 G/mol CH. Divide 78.110 G/mol by 13.018 g/mol. You get approximately 6. Multiply that by the subscript of each element. 6(CH)=
