Answer:
El volumen del gas en el recipiente es 3.29 L si se disminuye la temperatura a 7°C
Explanation:
La Ley de Charles es una ley de los gases que relaciona el volumen y la temperatura de una cierta cantidad de gas a presión constante.
Esta ley establece que el volumen es directamente proporcional a la temperatura del gas. Es decir que si la temperatura aumenta, el volumen del gas aumenta, mientras que si la temperatura del gas disminuye, el volumen disminuye.
Matemáticamente, si la cantidad de gas y la presión permanecen constantes, el cociente entre el volumen y la temperatura siempre tiene el mismo valor:

Suponiendo un cierto volumen de gas V1 que se encuentra a una temperatura T1 al comienzo del experimento, al variar el volumen de gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se cumplirá:

En este caso, sabes:
- V1= 3.5 L
- T1= 25 °C=298 °K (siendo 0°C=273°K)
- V2=?
- T2=7 °C=280 °K
Reemplazando:

Y resolviendo obtienes:
V2= 3.29 L
<u><em>El volumen del gas en el recipiente es 3.29 L si se disminuye la temperatura a 7°C</em></u>
Answer:
1.13moles
Explanation:
Given parameters:
Number of atoms = 6.777 x 10²³ atoms
Unknown:
Number of moles = ?
Solution:
A mole of a substance contains the avogadro's number of particles
6.02 x 10²³ particles = 1 mole
6.777 x 10²³ atoms will contain
= 1.13moles
Answer:
Mixing colored lights & mixing colored paints. The primary colors of light are also known as the additive colors, because, when you add these three colors of light (red, green and blue) your brain perceives white light. The primary colors of paints, however, are known as subtractive colors.
Explanation:
<em>Your </em><em>well-wisher</em>
Answer:
Never leave an open flame unattended
Explanation: if an open flame is left unattended it can cause a fire outbreak so we have to watch it at all times to prevent the fire outbreak
Answer:
Both b and d can be correct
Explanation:
Generally, diffusion does not require energy (<em>making option a wrong</em>) because it is the movement of particles from a region of high concentration to a region of low concentration hence diffusion moves particles in the direction of a concentration gradient. An example of this is the passive transport (for instance, uptake of glucose by a liver cell).
However, in some cases, when diffusion is against the concentration gradient (i.e when particles move from a region of low concentration to a region of high concentration), diffusion will require energy in a case like this (<em>making option c wrong</em>). An example of this is active transport (transport of protein called sodium-potassium pump which involves pumping of potassium into the cell and sodium out of the cell).
The explanation above shows that diffusion can require energy to move particles (in or out) of the cell through the cell membrane.