When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
Answer:
a=554.88
Step-by-step explanation:
20.4*27.2=
What is the question is the o
Answer:
A ≈ $500
General Formulas and Concepts:
<u>Pre-Alg</u>
- Order of Operations: BPEMDAS
<u>Algebra I</u>
Compounded Interest Rate: A = P(1 + r/n)ⁿˣ
- A is final amount
- P is initial (principle) amount
- r is rate
- n is number of compounds
- x is number of years
Step-by-step explanation:
<u>Step 1: Define</u>
P = 230
r = 0.063
n = 365
x = 12
<u>Step 2: Solve for </u><em><u>A</u></em>
- Substitute: A = 230(1 + 0.063/365)³⁶⁵⁽¹²⁾
- Divide: A = 230(1 + 0.000173)³⁶⁵⁽¹²⁾
- Multiply: A = 230(1 + 0.000173)⁴³⁸⁰
- Add: A = 230(1.00017)⁴³⁸⁰
- Exponents: A = 230(2.1296)
- Multiply: A = 489.808