Answer:
Option (4). Rhombus
Step-by-step explanation:
From the figure attached,
Distance AB = ![\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28x_%7B2%7D-x_%7B1%7D%29%5E2%2B%28y_%7B2%7D-y_%7B1%7D%29%5E2%7D)
= ![\sqrt{(1-4)^2+(-5+3)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%281-4%29%5E2%2B%28-5%2B3%29%5E2%7D)
= ![\sqrt{(-3)^2+(-2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-3%29%5E2%2B%28-2%29%5E2%7D)
= ![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
Distance BC = ![\sqrt{(4-1)^2+(-3+1)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%284-1%29%5E2%2B%28-3%2B1%29%5E2%7D)
= ![\sqrt{9+4}](https://tex.z-dn.net/?f=%5Csqrt%7B9%2B4%7D)
= ![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
Distance CD = ![\sqrt{(-2-1)^2+(-3+1)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-2-1%29%5E2%2B%28-3%2B1%29%5E2%7D)
= ![\sqrt{9+4}](https://tex.z-dn.net/?f=%5Csqrt%7B9%2B4%7D)
= ![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
Distance AD = ![\sqrt{(1+2)^2+(-5+3)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%281%2B2%29%5E2%2B%28-5%2B3%29%5E2%7D)
= ![\sqrt{9+4}](https://tex.z-dn.net/?f=%5Csqrt%7B9%2B4%7D)
= ![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
Slope of AB (
) = ![\frac{y_{2}-y_{1}}{x_{2}-x_{1}}](https://tex.z-dn.net/?f=%5Cfrac%7By_%7B2%7D-y_%7B1%7D%7D%7Bx_%7B2%7D-x_%7B1%7D%7D)
= ![\frac{4-1}{-3+5}](https://tex.z-dn.net/?f=%5Cfrac%7B4-1%7D%7B-3%2B5%7D)
= ![\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D)
Slope of BC (
) = ![\frac{4-1}{-3+1}](https://tex.z-dn.net/?f=%5Cfrac%7B4-1%7D%7B-3%2B1%7D)
= ![-\frac{3}{2}](https://tex.z-dn.net/?f=-%5Cfrac%7B3%7D%7B2%7D)
If AB and BC are perpendicular then,
![m_{1}\times m_{2}=-1](https://tex.z-dn.net/?f=m_%7B1%7D%5Ctimes%20m_%7B2%7D%3D-1)
But it's not true.
[
= -
]
It shows that the consecutive sides of the quadrilateral are not perpendicular.
Therefore, ABCD is neither square nor a rectangle.
Slope of diagonal BD =
= Not defined (parallel to y-axis)
Slope of diagonal AC =
= 0 [parallel to x-axis]
Therefore, both the diagonals AC and BD will be perpendicular.
And the quadrilateral formed by the given points will be a rhombus.