n = PV/RT
p = 1.6 atm
v = 12.7L
R = 0.0821
T = 24°C which is equivalent to 297.15 degrees k
n = (16 × 12.7) / (0.0821 × 297.15)
n = 20.32 / 24.39
n = 0.83 mol
C = 12.90
H = 1.0079
C2 = 12.010 × 2 = 24.02
H6 = 1.0079 × 6 = 6.0474
C2H6 = 30.0674
Ethane times n which is 30.0674 × 0.83mol
= 24.95 grams of C2H6. Which is Ethane.
Answer: Option (D) is the correct answer.
Explanation:
Valence shell is the shell present on the outermost core of an atom and electrons present in the valence shell are known as valence electrons.
If an atom has completely filled valence shell then it means the atom is not reactive in nature because it is already stable.
But when an atom has less than eight electrons in its valence shell then it means to attain stability the atom will readily attract electrons towards itself.
As the given element 1 has 8 electrons in its valence shell. Hence, it is not reactive in nature but element 2 has 6 valence electrons. So, in order to attain stability element 2 will readily attract 2 electrons from a donor atom.
Thus, we can conclude that element 2 is more reactive because it does not have a full valence shell, so it will attract electrons.
Answer:
1) P₄ + 5O₂ → P₄O₁₀ redox reaction
2) P₄O₁₀ + 6H₂O → 4H₃PO₄ acid-base reaction
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄ precipitation reaction
Explanation:
The reactions that take place in the <u>electric furnace method</u> are:
1) P₄ + 5O₂ → P₄O₁₀
This is a redox reaction, because the oxidation state of the reactants is changed.
2) P₄O₁₀ + 6H₂O → 4H₃PO₄
This is an acid-base reaction, because there's an exchange of H⁺ species.
The reaction that takes place in the <u>wet process</u> is:
3) Ca₅(PO₄)₃F + 5H₂SO₄ → 3H₃PO₄ + HF + 5CaSO₄
This is an precipitation reaction, because a precipitate (a solid phase in a liquid phase) is formed.
Answer:
Volume of solution = 80.5 mL
Explanation:
Given data:
Molarity of solution = 4.50 mol/L
Mass of ethanol = 16.7 g
Volume of solution = ?
Solution:
Volume will be calculated from molarity formula.
Molarity = number of moles / volume in L
Number of moles:
Number of moles = mass/molar mass
Number of moles = 16.7 g/ 46.07 g/mol
Number of moles = 0.3625 mol
Volume of solution:
Molarity = number of moles / volume in L
4.50 mol/L = 0.3625 mol / volume in L
Volume in L = 0.3625 mol /4.50 mol/L
Volume in L = 0.0805 L
Volume in mL:
0.0805 L ×1000 mL/1 L
80.5 mL