Answer:
5.8 g
Explanation:
Molecular weight in Daltons is equivalent to the molecular weight in grams per mole.
The amount of NaCl required is calculated as follows:
(2 mol/L)(50 mL)(1 L/1000 mL) = 0.1 mol
This amount is converted to grams using the molar mass (58 g/mol).
(0.1 mol)(58 g/mol) = 5.8 g
Find the number of moles of sodium you have:
<span>n = m/M where m is your 20g of sodium and M is 22.99 g/mol. </span>
<span>Look at the stoichiometry of the equation - it's 2:2 when you are producing NaOH. So if you took 1 mole of Na, it'd produce 1 mole of NaOH (as the ratio is equal). </span>
<span>That means that your moles of sodium is equal to the moles of NaOH produced. Use the molar mass of NaOH - which is 39.998 g/mol along with your calculated number of moles to get the mass (the formula rearranges to m = nM). </span>
<span>This figure is the theoretical yield - what you would get if every last mole of sodium was converted into NaOH. </span>
<span>What you get in practice is the experminetal yield, and the percentage yield is the experimental yield divided by the theoretical yield - and then multiplied by 100%.</span>
Answer:
German chemist G.E. Stahl
Explanation:
this theory was first articulated in 1697
They can form acids or ‘acid rain’ like nitric acid or sulfuric acid which can damage buildings and structures.