Answer:
A practical siphon, operating at typical atmospheric pressures and tube heights, works because gravity pulling down on the taller column of liquid leaves reduced pressure at the top of the siphon (formally, hydrostatic pressure when the liquid is not moving).
I hope it's helpful!
Answer:
A) E = 4.96 x 10³ eV
B) E = 4.19 x 10⁴ eV
C) E = 3.73 x 10⁹ eV
Explanation:
A)
For photon energy is given as:


where,
E = energy of photon = ?
h = 6.625 x 10⁻³⁴ J.s
λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Therefore,

<u>E = 4.96 x 10³ eV</u>
<u></u>
B)
The energy of a particle at rest is given as:

where,
E = Energy of electron = ?
m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 4.19 x 10⁴ eV</u>
<u></u>
C)
The energy of a particle at rest is given as:

where,
E = Energy of alpha particle = ?
m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 3.73 x 10⁹ eV</u>
Answer:
- The initial speed of the truck is 21.93 m/s, and the initial speed of the car is 19.524 m/s
Explanation:
We can use conservation of momentum to find the initial velocities.
Taking the unit vector
pointing north and
pointing east, the final velocity will be


The final linear momentum will be:




As there are not external forces, the total linear momentum must be constant.
So:

As initially the car is travelling east, and the truck is travelling north, the initial linear momentum must be
so:
so

So, for the truck





And, for the car



Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 