1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

2 tan 30°II1 + tan- 300​

Mathematics
1 answer:
shusha [124]3 years ago
3 0

Question:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}

Answer:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= sin(60^{\circ})

Step-by-step explanation:

Given

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}

Required

Simplify

In trigonometry:

tan(30^{\circ}) = \frac{1}{\sqrt{3}}

So, the expression becomes:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2 * \frac{1}{\sqrt{3}}}{1 + (\frac{1}{\sqrt{3}})^2}

Simplify the denominator

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2 * \frac{1}{\sqrt{3}}}{1 + \frac{1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{ \frac{3+1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{ \frac{4}{3}}

Express the fraction as:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= \frac{2}{\sqrt 3} / \frac{4}{3}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2}{\sqrt 3} * \frac{3}{4}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{1}{\sqrt 3} * \frac{3}{2}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3}{2\sqrt 3}

Rationalize

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3}{2\sqrt 3} * \frac{\sqrt{3}}{\sqrt{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3\sqrt{3}}{2* 3}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\sqrt{3}}{2}

In trigonometry:

sin(60^{\circ}) =  \frac{\sqrt{3}}{2}

Hence:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= sin(60^{\circ})

You might be interested in
ASAP h(t)=-5t^2+5t+10<br><br> Please help me find roots and roots equation
Alex

Answer:

t = -1, 2

Step-by-step explanation:

Step 1: Define

h(t) = -5t² + 5t + 10

Step 2: Factor

h(t) = -5(t² - t - 2)

h(t) = -5(t - 2)(t + 1)

Step 3: Find roots

0 = -5(t - 2)(t + 1)

0 = (t - 2)(t + 1)

t - 2 = 0

t = 2

t + 1 = 0

t = -1

8 0
3 years ago
The prevalence of cigarette smoking in the united states is in decline if the percentage of smokers in 2014 was 16.7% and the pe
astraxan [27]

The linear formula for the sequence whose terms represent the percentage of americans who smoke n years after 2014 is:

a(n) = -5.6n + 16.7

<h3>What is a linear function?</h3>

A linear function is modeled by:

y = mx + b

In which:

  • m is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.
  • b is the y-intercept, which is the value of y when x = 0, and for a time-dependent function, can also be interpreted as the initial value.

In this problem:

  • The percentage of smokers in 2014 was 16.7%, hence the initial value is b = 16.7
  • The percentage is decreasing by 5.6% each year, hence the slope is m = -5.6.

Then, the <em>equation </em>is:

y = mx + b

a(n) = -5.6n + 16.7

You can learn more about linear functions at brainly.com/question/24808124

7 0
3 years ago
Explain how you can use doubles when multiplying with 4 to find 4x8
STALIN [3.7K]
You can figure out what four times eight is by adding eight and eight(16) and doubling it (32)
8 0
4 years ago
Y=6x+5 is the equation. what is its gradient
Irina18 [472]
Gradient is synonymous to slope.

y = 6x + 5 is an example of a slope-intercept form of a straight-line equationl.

The slope-intercept equation is like this:

y = mx + b

where : m = slope ; b = "y-intercept"

y = 6x + 5

6 is the slope
5 is the y-intercept.

Since slope and gradient are synonymous, 6 is the gradient of the above equation.
8 0
3 years ago
Prove the Pythagorean Theorem using similar triangles. The Pythagorean Theorem states that in a right triangle, the sum of the s
aivan3 [116]
For the answer to the question above asking to p<span>rove the Pythagorean Theorem using similar triangles. The Pythagorean Theorem states that in a right triangle, 
</span>A right triangle consists of two sides called the legs and one side called the hypotenuse (c²) . The hypotenuse (c²)<span> is the longest side and is opposite the right angle.

</span>⇒ α² + β² = c² 
<span>
"</span>In any right triangle ( 90° angle) <span>, the sum of the squared lengths of the two legs is equal to the squared length of the hypotenuse."
</span>
For example:  Find the length of the hypotenuse of a right triangle if the lengths of the other two sides are 3 inches and 4 inches.  
c2 = a2+ b2
c2  = 32+ 42
c2 = 9+16
c2 = 15
c = sqrt25
c=5
8 0
3 years ago
Other questions:
  • What is 50% of 166%?
    14·2 answers
  • Ashley and four friends went trick or treating each of them got 4/5 of a bag of treats how many bags of treats did they have in
    12·2 answers
  • Find the area and perimeter of the composite shape..
    10·1 answer
  • Please help :) it’s my last j-lab question and I have to get a 100.
    14·1 answer
  • 6 more than x is equal to 33
    7·2 answers
  • AHHH I just wanna know if what I put on the table is right ;-;​
    13·2 answers
  • What is the mean of the values in the dot plot?<br><br><br><br> Enter your answer in the box.
    8·1 answer
  • the length of side AB is twice the length of side AC. Write an expression for the perimeter of the triangle
    10·1 answer
  • 1/8 O 0.1 <br> A. =<br> B. &gt;<br> C. &lt;<br> D. none of the above
    6·1 answer
  • What is the slope of the between (-4,3) and (2,-1)?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!