Answer:
Using Transformations
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
Answer:
2.85
Step-by-Step Explanation:
Introduction. Percent, p%
'Percent (%)' means 'out of one hundred':
1.5% = 1.5 'out of one hundred',
p% is read p 'percent',
p% = p/100 = p ÷ 100
1.5% = 1.5/100 = 1.5 ÷ 100 = 0.015
100% = 100/100 = 100 ÷ 100 = 1
Percentage of 1.5% of what number = 2.85?
1.5% of what number = 2.85
... is equivalent to:
1.5% × ? = 2.85
1.5% × ? = 2.85 =>
? =
2.85 ÷ 1.5% =
2.85 ÷ (1.5 ÷ 100) =
(100 × 2.85) ÷ 1.5 =
285 ÷ 1.5 =
190
1.5% of 190 = 2.85
If 1.5% × 190 = 2.85 =>
Divide 2.85 by 190...
... And see if we get as a result: 1.5%
Note:
Multiply a number by the fraction 100/100,
... and its value doesn't change.
100/100 = 100 ÷ 100 = 1
n/100 = n%, any number.
Calculate the percent value:
2.85 ÷ 190 =
0.015 =
0.015 × 100/100 =
(0.015 × 100)/100 =
1.5/100 =
1.5%
So we have proven that the calculations are correct.
Answer:
1.5% of 190 = 2.85
Answer: [B]: Two (2) real solutions .
__________________________________________________________
Explanation:
__________________________________________________________
Given: -7x² − 11x − 2 = 0 ;
__________________________________________________________
We see that it is in "quadratic format" ; that is:
__________________________________________________________
" ax² + bx + c = 0 ; a ≠ 0 ; "
__________________________________________________________
Multiply the entire equation by "-1" ; to get rid of the "negative number" :
__________________________________________________________
→ -1 * {-7x² − 11x − 2 = 0} ;
__________________________________________________________
to get: → 7x² + 11x + 2 = 0 ;
__________________________________________________________
This expression is written in the "quadratic format";
ax² + bx + c = 0 ; in which: a = 7 ; b = 11; c = 2 ;
__________________________________________________________
The expression cannot be "factored"; so, we can solve for "x" ; by using the "quadratic equation formula" ;
__________________________________________________________
x = {-b ± √(b² − 4ac)} / {2a} ;
______________________________________
Let us solve for: "(2a)" : 2a = 2 * a = 2 * 7 = 14 ;
Let us solve for: "(b² − 4ac)": 11² − 4*7*2 = 121 − 56 = 65;
→ √(b² − 4ac) = √65
______________________________________
→ " -b" = -11 ;
________________________________________________
So, x = (-11 ± √65) / 14 ;
________________________________________________
There are TWO (2) solutions:
_______________________________________________________
Solution 1) x = (-11 + √65) / 14 = - 0.2098387322643893071; AND:
_______________________________________________________
Solution 2) x = (-11 − √65) / 14 = -1.3615898391641821214 ;
_______________________________________________________
So, there are TWO (2) real solutions.
_______________________________________________________