Looks like the system is

We can eliminate
by taking




so that
, and



Substitute
into this last equation and solve for
:




Then



Plug these values into any one of the original equation to solve for
:




Hence the solution is x = 4, y = -3, and z = 2.
The median for this set of data, I believe it is Team Leader. Mostly because the middle wage is Team Leader, along with the wage.
Answer:
<h2>4x⁴yz - 16y³z = 4yz(x² - 2y)(x² + 2y)</h2>
Step-by-step explanation:

Answer:
x=5
y=3
Step-by-step explanation:
easy question to solve