Answer:
Explanation:
Here, we want to describe the relationship between the volume and temperature of an ideal gas
This relationship is defined by Charles' law
From this law, we know that the volume of a given mass of gas is directly proportional to its temperature at a fixed pressure
What this means is that as long as the pressure remains unchanged, when the volume increases, the temperature increases, and when the volume decreases, the temperature decreases
These can be represented by the mathematical formula below:
Answer: Theoretical Yield = 0.2952 g
Percentage Yield = 75.3%
Explanation:
Calculation of limiting reactant:
n-trans-cinnamic acid moles = (142mg/1000) / 148.16 = 9.584*10⁻⁴ mol
pyridium tribromide moles = (412mg/1000) / 319.82= 1.288*10⁻³ mol
- n-trans-cinnamic acid is the limiting reactant
The molar ratio according to the equation mentioned is equals to 1:1
The brominated product moles is also = 9.584*10⁻⁴ mol
Theoretical yield = (9.584*10⁻⁴ mol) * (Mr of brominated product)
= (9.584*10⁻⁴ mol) * (307.97) = 0.2952 g
Percentage Yield is : Actual Yield / Theoretical Yield = 0.2223/0.2952
= 75.3%
Answer:
= 61.25 g
= 88.75 g
Explanation:
=
= 50 g
⇒
=
= 1.25 (moles)
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
2 : 1 : 1 : 2
1.25 (moles)
⇒
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 98 = 61.25 g
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 142 = 88.75 g
Answer:
The resulting solution is basic.
Explanation:
The reaction that takes place is:
First we <u>calculate the added moles of HNO₃ and KOH</u>:
- HNO₃ ⇒ 12.5 mL * 0.280 M = 3.5 mmol HNO₃
- KOH ⇒ 5.0 mL * 0.920 M = 4.6 mmol KOH
As <em>there are more KOH moles than HNO₃,</em> the resulting solution is basic.
Answer:
Don’t change, keep the same
Explanation: