Answer:
lol nooooooooooooooooo
Step-by-step explanation:
6x−12+2x=3+8x−15
Simplify:
6x+−12+2x=3+8x+−15
(6x+2x)+(−12)=(8x)+(3+−15)(Combine Like Terms)
8x+−12=8x+−12
8x−12=8x−12
Subtract 8x from both sides.
8x−12−8x=8x−12−8x
−12=−12
Add 12 to both sides.
−12+12=−12+12
0=0
The real numbers are the only solution we can have.
Answer:
The probability of selecting a class that runs between 50.2550.25 and 51.2551.25 minutes is 0.10
Step-by-step explanation:
The Uniform Distribution, also known as Rectangular Distribution, is a type of Continuous Probability Distribution. It has a continuous random variable restricted to a finite interval and its probability function has a constant density during this interval.
The formula of probability if given by:
f(x)=
![\left \{ {{\frac{1}{b-a}; \ a \leq x \leq b } \atop {0}; \ x \ otherwise } \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7Bb-a%7D%3B%20%5C%20a%20%5Cleq%20x%20%5Cleq%20b%20%20%7D%20%5Catop%20%7B0%7D%3B%20%5C%20x%20%5C%20otherwise%20%7D%20%5Cright.)
In this exercise a= 46.0 and b= 56.0
The probability of selecting a class that runs between 50.2550.25 and 51.2551.25 minutes is:
![\int\limits^{51.25}_{50.25} {\frac{1}{56-46} } \, dx = \int\limits^{51.25}_{50.25} {\frac{1}{10} } \, dx = \frac{1}{10} \times (51.25 - 50.25)=\frac{1}{10}=0.1](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B51.25%7D_%7B50.25%7D%20%7B%5Cfrac%7B1%7D%7B56-46%7D%20%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E%7B51.25%7D_%7B50.25%7D%20%7B%5Cfrac%7B1%7D%7B10%7D%20%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B10%7D%20%5Ctimes%20%2851.25%20-%2050.25%29%3D%5Cfrac%7B1%7D%7B10%7D%3D0.1)
Answer:
42
Step-by-step explanation:
3x^2 +5x
Let x=3
3(3)^2 +5(3)
3*9 +15
27+15
42