Dilution refers to decreasing the ratio of total solution to the reference solution by the addition of other liquids. By adding water to tomato soup, the balance of “tomato soup” molecules decreases from 100% tomato soup, to eventually 1:1 TS and Water (50%), and so on. Chemically, you can observe this as decreasing the concentration of tomato soup in this solution.
Answer:
44 grams/mole
Explanation:
<u>If 1 mol of XO₂ contains the same number of atoms as 60 g of XO3, what is the molar mass of XO₂?</u>
<u></u>
60 grams of XO3 is one mole XO3, since it has the same number of atoms as 1 mole of XO2.
Let c be the molar mass of X. The molar mass of XO3 is comprised of:
X: c
3O: 3 x 16 = 48
Total molar mass of XO3 is = <u>48 + c</u>
We know that the molar mass of XO3 = 60 g/mole, so:
48 + c = 60 g/mole
c = 12 g/mole
The molar mass of XO2 would be:
1 X = 12
2 O = 32
Molar mass = 44 grams/mole, same as carbon dioxide. Carbon's molar mass is 12 grams.
<u></u>
<u></u>
Answer:
Curd, lemon juice, orange juice and vinegar taste sour. These substances taste sour because they contain acids. The chemical nature of such substances is acidic. The word acid comes from the Latin word acere which means sour.
Answer:
Explanation:
1. Select all the statements about the nucleus of the atom that are correct:
Group of answer choices
B. It contains Protons
D. It has a Positive Charge
E. It contains Neutrons
2. An atom of an element with atomic number 50 and mass number 120 contains:
Group of answer choices
B. 50 protons, 50 electrons, and 70 neutrons
3. Which of these statements is false?
Group of answer choices
D. Electrons have the same mass as a proton but have the opposite charge.
Answer:
d. its effective nuclear charge is lower than the other noble gases.
Explanation:
Xenon belongs to group O on the periodic table. Most of the elements here are unreactive.
Due to the large size of Xenon, the outermost electrons have very low effective nuclear charge. Effective nuclear charge is the effect of the positive charges of the nucleus on the electrons in orbits. This effect decreases outward as atomic shell increases.
Xenon has a very large atomic radius and there is weak a nuclear charge on the outermost electrons. The more electronegative elements would be able to attract some of its outermost electrons easily and form chemical bonds with xenon much more readily.