Answer:
a. alkyne
b. alkane
c. alkyne
d. alkene
Explanation:
The general formula for each class of compound is given below
Alkane: 
Alkene: 
Alkyne:
(assuming single multiple bonds)
Now let us classify according to the above formulas:
a. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
b. It has two hydrogen atoms more than the two times of carbon atoms hence, it's alkane
c. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
d. It has hydrogen atoms two times of carbon atoms hence, it's alkene
Answer: B
Explanation:
protons are positive,
electrons are negative,
and neutrons are neutral.
the amount of electrons to protons is always the same in a balanced atom.
electrons can be removed creating "ions" which is simply an unbalanced atom. removing protons would result in a different type of atom or element.
Answer:
The volume will be "2.95 L".
Explanation:
Given:
n = 0.104
p = 0.91 atm
T = 314 K
Now,
The Volume (V) will be:
= 
By putting the values, we get
= 
= 
= 
Answer:
The mass of C2H2 in the mixture is 0.56gram using the ratio of carbon in the products contributed by the C2H2.
Explanation:
The balanced equation for the reaction is: C3H8 + 2C2H2 + 10O2 >> 7CO2 + 6H2O.
From the reaction, we know that the oxygen was in excess, this will make the Carbon sources the limiting agents in the reaction. The details of the reaction showed that the ratio of water to the carbon dioxide is 1.6:1. This also means that the expected mole of carbon dioxide will be 7/1.6, which is 3.75moles.
The individual balanced equation of reaction is:
C3H3 +5O2 >> 3CO2 + 4H2O
and 2C2H2 + 5O2 >>4CO2 + 2H2O. From this one can quickly tell that the propane is in sufficient supply as it produces 3 moles of CO2 out of the expected 3.75 moles obtained above. Leaving 0.75moles of CO2 to the ethyne.
The mass of ethyne in the mixture will therefore be: 0.75/3.75 X 2.8 = 0.56g.
The answer a way of explaining a complex concept.