Answer:
H₃PO₄ is an acid because donates the proton to fenolate.
Fenolate is the base because accepts the proton from the acid.
Explanation:
Bronsted theory mentioned that acid is the one that donates a proton to another compound and base is the one that receives it.
H₃PO₄ + C₆H₅O⁻ ⇄ H₂PO₄⁻ + C₆H₅OH
acid base conj. base conj. acid
H₃PO₄ is an acid because donates the proton to fenolate.
Fenolate is the base because accepts the proton from the acid.
If we follow the dissociation, the diacid phosphate can donate two more protons, it is still a Bronsted acid, but it can act as an acid or a base. This is called amphoteric.
The speed of light is 299,792,458 meters per second in vacuum.
It's somewhat slower in any material substance, and different in
each substance.
(That's 186,282.4 miles per second.)
Answer:
I guess it all of these
as life cycle of an organism can be predicted and yeah it begins with birth hatching or germination for mammals, animals and plants respectively. then it's same for the organism of the same species .
Answer:
979 atm
Explanation:
To calculate the osmotic pressure, you need to use the following equation:
π = <em>i </em>MRT
In this equation,
-----> π = osmotic pressure (atm)
-----><em> i</em> = van't Hoff's factor (number of dissolved ions)
-----> M = Molarity (M)
-----> R = Ideal Gas constant (0.08206 L*atm/mol*K)
-----> T = temperature (K)
When LiCl dissolves, it dissociates into two ions (Li⁺ and Cl⁻). Therefore, van't Hoff's factor is 2. Before plugging the given values into the equation, you need to convert Celsius to Kelvin.
<em>i </em>= 2 R = 0.08206 L*atm/mol*K
M = 20 M T = 25°C + 273.15 = 298.15 K
π = <em>i </em>MRT
π = (2)(20 M)(0.08206 L*atm/mol*K)(298.15 K)
π = 979 atm
Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink). We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.