------------------------------------------------------------------
Question
------------------------------------------------------------------

------------------------------------------------------------------
Split the fraction on the left
------------------------------------------------------------------

------------------------------------------------------------------
Take away h/5 from both sides
------------------------------------------------------------------

------------------------------------------------------------------
Change the denominator to be the same
------------------------------------------------------------------

------------------------------------------------------------------
Put it into single fraction
------------------------------------------------------------------

-------------------------------------------------------------------
Rearrange (This step may not be necessary)
------------------------------------------------------------------

The answer is (7,6)
This is because a midpoint is in the exact middle, meaning that both sides are an equal distance away. You can find this by fining the difference between the two corresponding coordinates then adding that difference to the midpoint and that will give you your other endpoint.
Hope this helped !!
Answer:
320 messages
Step-by-step explanation:
20 messages per dollar,
20 x 16 equals 320
Y=1/2x+c
0=1/2 (10)+c
0=5+c
c=-5
the equation is y=1/2x+5
the slope is the same since these two lines are parallel
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2