Answer:
2 moles of HNO3
Explanation:
The equation seems to be balanced correctly. The problem is we done know what you started with. We will assume it is 3 moles of NO2.
If that is the case then 2 moles of HNO3 will be produced.
Answer: Pelton Wheel
Explanation: This design is the most efficient for very high heads and stable water flows, allowing for several hundreds of megawatts of unit capacity.
Answer:
The answer to your question is V₁ = 12.5 ml
Explanation:
Data
Volume = V₁?
[NaOH] = C₁ = 4.0 M
Volume 2 = V₂ = 100 ml
[NaOH] = C₂ = 0.5 M
Formula of dilution
V₁C₁ = V₂C₂
Solve for V₁ (original solution)
V₁ = 
Substitution
V₁ = 
Simplification
V₁ = 
Result
V₁ = 12.5 ml
Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
There will be a transfer of thermal energy (heat) from the hot metal plate to the surrounding air. This transfer of energy equates to a transfer of kinetic energy in the molecules. As the plate loses heat, the molecules in the plate will lose kinetic energy and slow down. As the surrounding air gains heat, the molecules will gain kinetic energy and speed up.
The correct name for the hydrocarbon would be option 2. 2 - methyl - 2 - pentene.