Answer:
A
Explanation:
bcuz the water in it is little
Answer:
Explanation:
<u>1) Data:</u>
a) m = 18 kg
b) T₁ = 285 K
c) T₂ = 318 K
d) Q = 267.3 kJ
e) S = ?
<u>2) Principles and equations</u>
The specific heat of a substance is the amount of heat energy absorbed to increase the temperature of certain amount (gram, kg, or moles, depending on the definition or units) of the substance in 1 ° C or 1 K.
The mathematical relation between the specific heat and the heat energy absorbed is:
Where,
- Q is the heat absorbed,
- S is the specific heat, and
- ΔT is the temperature increase (T₂ - T₁)
<u>3) Solution:</u>
<u>a) Substitute the data into the equation:</u>
- 267.3 kJ = 18 kg × S × (318 K - 285 K)
<u>b) Solve for S and compute:</u>
- S = 267.3 kJ / (18 kg × 33 K) = 0.45 kJ / (Kg . K)
The options have not units, but I notice that the first answer is 1,000 times the answer I obtained, so I will make a conversion of units.
<u>c) Convert to J /( kg . k):</u>
- 0.45 kJ / (Kg . K) × 1,000 J / kJ = 450 J / (kg . K)
Now we can see that the option A is is the answer, assuming the units.
Answer:
NaHCO3 sodium bicarbonate is baking soda; added to the acetic acid, it forms sodium acetate (aqueous), CO2 gas & water. Remove the water & solid sodium acetate remains.
Explanation:
<span>a regultate is to control or direct by a rule, principle, or method.</span>
Answer : The partial pressure of
and
are, 84 torr and 778 torr respectively.
Explanation : Given,
Mass of
= 15.0 g
Mass of
= 22.6 g
Molar mass of
= 197.4 g/mole
Molar mass of
= 32 g/mole
First we have to calculate the moles of
and
.

and,

Now we have to calculate the mole fraction of
and
.

and,

Now we have to partial pressure of
and
.
According to the Raoult's law,

where,
= partial pressure of gas
= total pressure of gas
= mole fraction of gas


and,


Therefore, the partial pressure of
and
are, 84 torr and 778 torr respectively.