Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
Answer:
t_total = 23.757 s
Explanation:
This is a kinematics exercise.
Let's start by calculating the distance and has to reach the limit speed of
v = 18.8 m / s
v = v₀ + a t₁
the elevator starts with zero speed
v = a t₁
t₁ = v / a
t₁ = 18.8 / 2.40
t₁ = 7.833 s
in this time he runs
y₁ = v₀ t₁ + ½ a t₁²
y₁ = ½ a t₁²
y₁ = ½ 2.40 7.833²
y₁ = 73.627 m
This is the time and distance traveled until reaching the maximum speed, which will be constant throughout the rest of the trip.
x_total = x₁ + x₂
x₂ = x_total - x₁
x₂ = 373 - 73,627
x₂ = 299.373 m
this distance travels at constant speed,
v = x₂ / t₂
t₂ = x₂ / v
t₂ = 299.373 / 18.8
t₂ = 15.92 s
therefore the total travel time is
t_total = t₁ + t₂
t_total = 7.833 + 15.92
t_total = 23.757 s
Answer:
K.E₂ = mg(h - 2R)
Explanation:
The diagram of the car at the top of the loop is given below. Considering the initial position of the car and the final position as the top of the loop. We apply law of conservation of energy:
K.E₁ + P.E₁ = K.E₂ + P.E₂
where,
K.E₁ = Initial Kinetic Energy = (1/2)mv² = (1/2)m(0 m/s)² = 0 (car initially at rest)
P.E₁ = Initial Potential Energy = mgh
K.E₂ = Final Kinetic Energy at the top of the loop = ?
P.E₂ = Final Potential Energy = mg(2R) (since, the height at top of loop is 2R)
Therefore,
0 + mgh = K.E₂ + mg(2R)
<u>K.E₂ = mg(h - 2R)</u>
1) g
2) b
3) a
4) e
5) c
6) d
7) f
Answer:
in the direction of the first body
Explanation:
Given:
- mass of the first ball,

- velocity of the first ball,

- mass of the second ball,

- velocity of the second ball,

<u>Now for the head-on inelastic collision:</u>

(since the bodies combine after an inelastic collision.)

in the direction of the first body. (Since the net result is positive as assumed in the equation for the first body)